

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

FAILURE ANALYSIS AND EVALUATION OF A COMPOSITE MATERIAL AUTOMOTIVE DRIVESHAFT BY USING FEM

Amol B. Rindhe* and S. R. Wagh

* Mechanical Engineering Department, SSGMCE, Shegaon, India

ABSTRACT

In an automobile industry a drive shaft play a major role in power transmission and it is generally is made of conventional metallic structure is replace by composite structure because they have higher strength and higher specific stiffness, as we used Kevlar or Carbon epoxy it having some drawback. In this paper work is deals with the replacement of conventional composite material drive shaft with a Eglass carbon /Epoxy, High strength carbon /Epoxy and High module carbon /Epoxy to overcome the drawback of conventional composite material drive shaft.

In this paper we are work for suggesting the best composite material for drive shaft and improve the life of drive shaft and also saving the percentage of material.

KEYWORDS: Drive shaft, Composite material, ANSYS11.0, Material Saving.

INTRODUCTION

Composite driveshafts can increase torque and can help prevent injuries such as a traditionally made of steel, a driveshaft transfers power from the transmission to the rear axle of the vehicle. If a steel driveshaft fails, however, it can project shrapnel in all directions and even dig into the ground, catapulting the vehicle into the air.

According to a commercial manufacturer of composite auto parts, drive shafts in race cars can pose serious threat of injury and even death to the driver inside, as shrapnel can penetrate the car and rollover can increase the chance of severe injury.

Composite driveshafts are made of carbon and polymer fiber that is designed to break into small fiber fragments or "broom" upon failure, posing little danger.

Composite driveshafts are also lightweight, requiring less energy to spin, effectively increasing the amount of power that the engine can transmit to the wheels

METHODOLOGY

Design of composite material drive shaft

Torque transmission capacity of drive shaft.

$$T = \frac{S_s \pi (d_o^4 - d_i^4)}{16 \times d_o \times F.S}$$

Where,

 S_s = Shear strength d_o = Outer diameter of shaft d_i = Inner diameter of shaft F.S = Factor of safety

Torsional buckjing capacity of drive shaft.

$$T_b = 2\pi r^2 t \ (0.272) \left(E_x E_y^3 \right)^{\frac{1}{4}} \left(\frac{t}{r} \right)^{\frac{1}{4}}$$

Where,

r = mean radius of shaft

t = Thickness of shaft

 E_x = Elastic modulus in axial direction

 E_{v} = Elastic modulus in tangential direction

Bending natural frequency of drive shaft.

$$f_{nb} = \frac{\pi}{2L^2} \times \sqrt{\frac{E_x I_x}{m'}}$$

Where,

Where.

$$\begin{split} I_x &= \frac{\pi}{64} \times (d_o^4 - d_i^4) \\ m' &= \rho \left(\frac{\pi}{4}\right) \times (d_o^2 - d_i^2) \end{split}$$

http://www.ijesrt.com

© International Journal of Engineering Sciences & Research Technology

ISSN: 2277-9655 Scientific Journal Impact Factor: 3.449 (ISRA), Impact Factor: 2.114

f_{nb} = Natural frequency
L = Length of shaft
I - Moment of inertia of cross s

 I_x = Moment of inertia of cross section of shaft m' = Mass of shaft per unit length

.

Mass of deive shaft $m = m' \times L$

Persentage saving material.

$$= \left(1 - \frac{m_{new}}{m_{old}}\right) \times 100$$

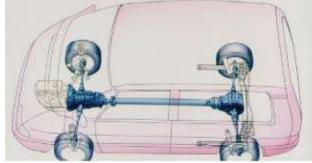


Fig-1; Composit material drive shaft

Table 1. Existing material Result [1]

Design	Steel	Kevlar	Carbon/
Constraint			Epoxy
Bending natural	160.89	101.903	101.903
frequency (Hz)			
Mass of shaft	8.601	3.4652	1.2923
(Kg)			

DESIGNCALCULATIONSOFCOMPOSITE MATERIAL DRIVE SHAFT

Table 2. Design requirements and specifications

Sr.No	Name	Notation	Unit	Value
1	Torque	T_{max}	Nm	3500
2	Max Speed	Nmax	rpm	6500
3	Length	L	mm	1250
4	Outer dia	do	mm	90

Table 3 . Properties of E-glass/epoxy,HS carbon/epoxy,HM carbon/epoxy

Sr.	Property	Units	E-glass/	HS	HM
No			epoxy	carbon/	carbon
				epoxy	/epoxy
1	E11	GPa	50	134	190
2	E22	GPa	12	7	7.7
3	G12	GPa	5.6	5.8	4.2

http://www.ijesrt.com

© International Journal of Engineering Sciences & Research Technology

4	V ₁₂	_	0.3	0.3	0.3
5	$S_1^t = S_1^c$	MPa	800	880	870
6	$S_2^t = S_2^c$	MPa	40	60	54
7	S 12	MPa	72	97	30
8	ρ	Kg/m ³	2000	1600	1600

RESULTS AND DISCUSSION *Table 3 . Analytical Result*

Design	E glass/	HScarbo	HMcarbo
Constraint	epoxy	n/epoxy	n/epoxy
Torsional	29593.8	3771.70	3765.54
buckling capacity			
(Nm)			
Bending natural	112.98	127.71	157.68
frequency (Hz)			
Mass of shaft	4.431	1.1328	1.132
(Kg)			
Thickness	6.77	2.04	2.04
(mm)			

ANSYS RESULTS

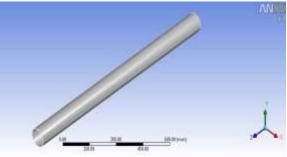


Fig- Model Geometry of drive shaft

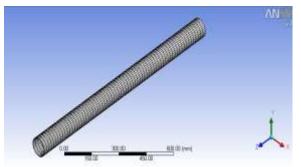


Fig- Mesh model of drive shaft

ISSN: 2277-9655 Scientific Journal Impact Factor: 3.449 (ISRA), Impact Factor: 2.114

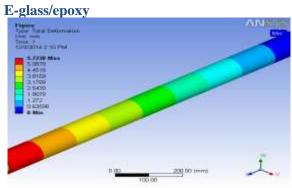


Fig- Natural Frquency Analysis of E-glass/ epoxy

Zones	Value in mm	Discussion	Natural Frquency Analysis (Hz)
Blue	0	Shows very low deformation occurred at one end	
Red	5.7238	Shows very high deformation occurred at other end portion	111.08

Table 4.

HS carbon/epoxy

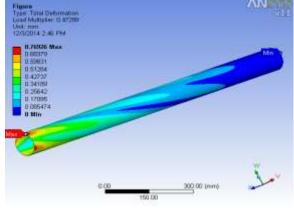


Fig- Natural Frquency Analysis of HS carbon/ epoxy

	Table 5.				
Zones	Value in mm	Discussion	Natural Frquency Analysis (Hz)		
Blue	0	Shows very low deformation occurred at one end			
Red	0.76926	Shows very high deformation occurred at other	125.12		

http://www.ijesrt.com

end portion

5.3 HM carbon/epoxy

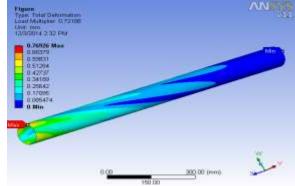


Fig- Natural Frquency Analysis of HM carbon/ epoxy

Table 6.

Zones	Value in mm	Discussion	Natural Frquency Analysis (Hz)
Blue	0	Shows very low deformation occurred at one end	
Red	0.76926	Shows very high deformation occurred at other end portion	154.73

CONCLUSION

I) Bending natural frequency of HS and HM carbon/epoxy drive shaft is nearly equal to steel drive shaft so less chance of failure.

II) By using HS and HM carbon/epoxy we save 86.89% of material.

III) So the life of HS and HM carbon/epoxy drive shaft is more, compare to other composite material drive shaft.

IV) The finite element modeling presented in this analysis is able to predict the buckling torque.

V) A best material to design a composite drive shaft is suggested i.e HS and HM carbon/epoxy.

REFERENCES

- R. Srinivasa Moorthy, Yonas Mitiku & K. Sridhar, "Design of Automobile Driveshaft using Carbon/Epoxy and Kevlar/Epoxy Composites", American Journal of Engineering Research (AJER), (2013)
- [2] D.Dinesh, F.Anand Raju "Optimum Design And Analysis Of A Composite Drive Shaft For An Automobile By Using Genetic

© International Journal of Engineering Sciences & Research Technology

Algorithm And Ansys"/ International Journal Of Engineering Research And Applications(IJERA) Vol. 2, Issue4, July-August 2012.

- [3] Mohammad Reza Khoshravan, "Design and Modal Analysis Of Composite Drive Shaft For Automotive Application", International Journal of Engineering Science and Technology (IJEST), (2011)
- [4] M.A.K. Chowdhuri et. al "Design Analysis of an Automotive Composite Drive Shaft" International Journal of Engineering and Technology Vol.2(2), 2010, 45-48, (2010)
- [5] Gay, D.; V. Hoa, S.; W. Tsai, S. "Composite materials: design and application", CRC press, (2004).
- [6] Pollard, A. "Polymer matrix composite in drive line applications". GKN technology, Wolverhampton, (1999)
- [7] Rangaswamy, T.; Vijayrangan, S. "Optimal sizing and stacking sequence of composite drive shafts". Materials science, Vol. 11 No 2., India,(2004).
- [8] Pappada, S.Rametto R., "Study of a composite to metal tubular joint".
 Department of Materials and Structures Engineering ,Technologies and Process, CETMA , Italy, (2002).
- [9] Madhu K.S.1, Darshan B.H.2, Manjunath K ,"BUCKLING ANALYSIS OF COMPOSITE DRIVE SHAFT FOR AUTOMOTIVE APPLICATIONS", Journal of Innovative Research and Solutions Volume No.1A, Issue No.2, Page No: 63 - 70, Jan – Jun 2013